Description
Der Arduino Micro ist ein Mikrocontroller Board, basierend auf dem ATmega32U4(datasheet). Er wurde in Zusammenarbeit mit Adafruit entwickelt. Er verfügt über 20 digitale In- und Output Pins ( von denen 7 als PWM Output nutzbar und 12 als analoge Inputs), einen 16 MHz Quarzoszillator, einen Mico USB Anschluss, einen ICSP Header und einen Reset Button. Er besitzt alles Notwendige um den Mikrocontroller zu betreiben. Um loszulegen müssen Sie den Arduino Micro lediglich per USB Kabel mit einem Computer verbinden. Seine Form macht es möglich ihn sehr einfach auf einem Breadboard zu platzieren.
Der Mikro ähnelt dem Leonardo darin, dass der ATmega32U4 bereits über eine integrierte USB Kommunikation verfügt, was einen zweiten Prozessor überflüssig macht. Es ermöglicht dem Leonardo von einem verbundenen Computer, zusätzlich zum virtuellen (CDC) seriellen / COM Port, als Maus und Tastatur erkannt zu werden. Darüber hinaus hat dies noch weitere Folgen für das Verhalten des Boards. Diese werden ausführlich auf der Erste Schritte Seite des Leonardos aufgeführt.
Zusammenfassung
Microcontroller | ATmega32u4 |
Operating Voltage | 5V |
Input Voltage (recommended) | 7-12V |
Input Voltage (limits) | 6-20V |
Digital I/O Pins | 20 |
PWM Channels | 7 |
Analog Input Channels | 12 |
DC Current per I/O Pin | 40 mA |
DC Current for 3.3V Pin | 50 mA |
Flash Memory | 32 KB (ATmega32u4) of which 4 KB used by bootloader |
SRAM | 2.5 KB (ATmega32u4) |
EEPROM | 1 KB (ATmega32u4) |
Clock Speed | 16 MHz |
Schaltplan & Referenz Design
EAGLE Dateien: arduino-micro-reference-design.zip
Schaltplan: arduino-micro-schematic-rev3b.pdf
Stromversorgung
Der Arduino Micro kann entweder über eine Micro USB Verbindung oder über ein externes Netzteil mit Strom versorgt werden. Die Stromquelle wird automatisch ausgewählt.
Für eine externe Versorgung kann entweder ein AC-to-DC Netzteil oder eine Batterie genutzt werden. Für die Versorgung mit einem Netzteil oder einer Batterie müssen die Anschlüsse dieser mit dem Gnd und dem Vin Pin des Boards verbunden werden.
Board kann mit einer externen Spannung von 6 bis 20 Volt versorgt werden. Bei weniger als 7V Versorgungsspannung, kann es jedoch sein dass der 5V Pin weniger als fünf Volt bereitstellt und das Board instabil wird. Wenn mehr als 12V angelegt werden, kann der Spannungsregler überhitzen und das Board beschädigen. Der empfohlene Spannungsbereich liegt daher bei 7-12V.
Die Power Pins:
- VI. An diesem Pin liegt die Input Spannung des Arduino an, wenn eine externe Stromquelle genutzt wird (anstatt der 5V einer USB Verbindung oder einer anderen regulierten Stromquelle). Sie können an diesen Pin Spannung anlegen.
- 5V. Die regulierte Stromversorgung zum Betreiben des Mikrocontrollers und anderer Komponenten des Boards. Entweder von VIN über den auf dem Board integrierten Spannungsregler, USB oder von einer anderen geregelten 5V Stromversorgung
- 3V3. Eine Spannung von 3.3 Volt, die vom auf dem Board integrierten Spannungsregler bereitgestellt wird. Der maximale Output Strom liegt bei 50 mA.
- ? Ground Pins.
Speicher
Der ATmega32U4 besitzt 32 KB Speicher (von denen 4 KB vom Arduino Bootloader belegt sind). Er verfügt außerdem über 2,5 KB SRAM und 1 KB EEPROM, welcher mit der EEPROM library) ausgelesen und beschrieben werden kann.
Input und Output
Jeder der 20 digitalen Pins des Arduino kann entweder als Input oder Output genutzt werden. Dafür stehen die FunktionenpinMode(), digitalWrite() und digitalRead() zur Verfügung. Sie arbeiten mit einer Spannung von 5 Volt. Jeder Pin kann einen maximalen Strom von 40mA bereitstellen oder aufnehmen und besitzt einen Pull-Up Widerstand von 20-50 kOhm, welcher 'by default' nicht verbunden ist. Zusätzlich gibt es Pins für spezielle Funktionen:
- Serial: 0 (RX) und 1 (TX). Mit diesen Pins können serielle Daten empfangen (RX) oder übertragen (TX) werden. Dies erfolgt über den ATmega32U4. Beachten Sie, das beim Micro die Serial Klasse auf die USB (CDC) Kommunikation verweist; Für TTL Serial Kommunikation an den Pins 0 und 1 nutzen sie bitte die Serial1 Klasse.
- TWI: 2 (SDA) und 3 (SCL). Unterstützung von TWI Kommunikation unter Verwendung der Wire Library.
- External Interrupts: 0(RX), 1(TX), 2 und 3. Diese Pins können so konfiguriert werden, dass sie bei einem niedrigen Wert, einem Anstieg oder Fall, oder einer Änderung des Wertes einen Interrupt auslösen. Für mehr Informationen beachten Sie die Funktion attachInterrupt().
- PWM: 3, 5, 6, 9, 10, 11, and 13. Diese Pins verfügen über einen 8-Bit PWM Output, welcher über die FunktionanalogWrite() gesteuert werden kann.
- SPI: on the ICSP header. Diese Pins unterstützen SPI Kommunikation unter Verwendung der SPI Library. Bitte beachten Sie, dass die SPI Pins nicht wie beim Uno mit den digitalen I/O Pins verbunden sind. Sie sind nur über den ICSP Connector erreichbar und über die Pins MIO, MOSI und SCK.
- RX_LED/SS Dies ist ein zusätzlicher Pin. Er ist mit der RX_LED verbunden, die Aktivität während einer USB Übertragung anzeigt. Er kann aber auch als "Slave-Select"-Pin (SS) der SPI Kommunikation verwendet werden.
- LED: 13. Auf dem Board befindet sich eine LED, welche mit dem Pin 13 verbunden ist. Wird der Pin HIGH geschaltet, geht die LED an und wird er LOW geschaltet, geht sie aus.
- Analog Inputs: A0-A5, A6 - A11 (an den digitalen Pins 4, 6, 8, 9, 10, und 12). Der Micro verfügt über 6 Analog Inputs. Sie tragen die Namen A0 bis A11 und können auch als digitale I/O Pins genutzt werden. Die Pins A0-A5 befinden sich an der gleichen Stelle wie beim Uno. Die Inputs A6-A11 sind über die digitalen I/O Pins 4,6,8,9,10 und 12 erreichbar. Jeder analoge Input verfügt über eine Auflösung von 10 Bits (also 1024 Abstufungen). Standardmäßig messen sie von Erdung bis 5 Volt. Die Obergrenze lässt sich jedoch mit Hilfe des AREF Pins und der FunktionanalogReference() ändern.
Auf dem Board befinden sich darüber hinaus noch folgende Pins:
- AREF. Hier liegt die Referenz Spannung für die analogen Inputs an. Er wird unter Verwendung der FunktionanalogReference() genutzt.
- Reset. Wird diese Leitung LOW gesetzt, wird der Mikrocontroller zurückgesetzt. Meistens wird dies für Reset Buttons auf Shields genutzt, wegen welchen man den Reset Button des Boards nicht mehr erreichen kann.
Pinbelegung
Die Pin Belegung des Micros zeigt, wie man die Pins genau so wie die Pins des Leonardos nutzen kann.
Für weitere Informationen beachten Sie auch das Mapping zwischen den Arduino Pins und den ATmega32U4 Ports?.
Kommunikation
Der Arduino Micro besitzt eine Vielzahl von Möglichkeiten um mit einem Computer, einem anderen Arduino, oder einem anderen Mikrocontroller zu kommunizieren. Der ATmega32U4 verfügt an den Digital Pins 0 (RX) und 1 (TX) über UART TTL (5V) serielle Kommunikation. Der 32U4 erlaubt außerdem serielle (CDC) Kommunikation über USP und erscheint am Computer als virtueller COM Port. Der Chip verhält sich als Full Speed USB 2.0 Gerät unter Verwendung des USB COM Treibers. Unter Windows, wird zusätzlich eine .inf Datei benötigt. Die Arduino Software enthält einen Serial Monitor mit welchem man einfache Text Daten an das Arduino Board senden und von diesem empfangen kann. Die RX und TXLEDs des Boards blinken wenn Daten über den USB-to-Serial Chip und die USB Verbindung übertragen werden (jedoch nicht bei serieller Kommunikation über die Pins 0 und 1).
Die SoftwareSerial Library ermöglicht die serielle Kommunikation an jedem der Digitalen Pins des Arduino Micro.
Der ATmega32U4 unterstützt außerdem I2C (TWI) und SPI Kommunikation. Die Arduino Software enthält eine Wire Library, welche die Nutzung des I2C Bus vereinfacht; Für nähere Informationen beachten Sie die Wire Documentation. Für SPI Kommunikation kann die SPI Library verwendet werden.
Der Micro wird als Tastatur und Maus erkannt und kann unter Verwendung der Keyboard und Mouse Klassen programmiert werden, diese zu steuern.
Programmierung
Der Arduino Micro kann mit der Arduino Software (download) programmiert werden. Wählen sie "Arduino Micro" imTools > Board Menü (je nach verwendetem Mikrocontroller). Für mehr Information beachten Sie die Referenz und dieTutorials.
Der ATmega32U4 des Arduino Micro wird mit einem vorinstalliertem Bootloader ausgeliefert, welcher den Upload von neuem Code ohne die Verwendung eines externen Hardware Programmers erlaubt. Er kommuniziert unter Verwendung des AVR109 Protokolls.
Der Bootloader kann umgangen werden und der Mikrocontroller über den ICSP (In-Circuit Serial Programming) Header programmiert werden. Lesen sie dafür diese Anleitung.
Automatischer (Software) Reset und Bootloader Initialisierung
Anstatt einen physikalischen Tastendruck des Reset Buttons vor einem Upload zu benötigen wurde der Micro so entworfen, dass die Software eines Computers ihn zurücksetzen kann. Der Reset wird ausgelöst, wenn der virtuelle (CDC) serielle / COM Port des Micro mit einer Baud Rate von 1200 geöffnet und wieder geschlossen wird. Wenn das passiert wird der Prozessor zurückgesetzt und unterbricht die USB Verbindung zum Computer (auch der virtuelle (CDC) serielle / COM Port wird geschlossen). Nach dem Prozessor Reset startet der Bootloader und ist für etwa 8 Sekunden aktiv. Der Bootloader kann auch durch einen Druck des Reset Buttons initialisiert werden. Bitte beachten Sie, dass das Board direkt zum Anwender Sketch springen wird wenn es dass erste mal mit Strom versorgt wird und nicht erst den Bootloader initialisiert.
Wegen der Art und Weise mit welcher der Micro mit Resets umgeht ist es das Beste die Arduino Software den Reset des Microkontrollers auslösen zu lassen, vorallem wenn Sie es noch von anderen Boards gewohnt sind den Reset Button zu drücken. Wenn die Software das Board nicht zurücksetzen kann, können sie dies immer noch manuell per Druck auf den Reset Button erzwingen.
USB Überstrom Schutz
Der Arduino Micro besitzt eine zurücksetzbare Mehrfachsicherung, welche den USB Port ihres Computers vor Kurzschlüssen und Überstrom schützt. Auch wenn die meisten Computer einen internen Schutz für solche Fälle besitzen bietet diese Sicherung einen zusätzlichen Schutz. Wenn mehr als 500 mA über die USB Verbindung fließen durchtrennt die Sicherung die Verbindung bis der Kurzschluss bzw. die Überlastung entfernt wurde.
Physikalische Merkmale
Die maximale Länge und Breite der Arduino Micro Platine sind 4,8cm und 1.77cm. Der USB Port ragt etwas über diese Maße hinaus. Das Layout erlaubt ein einfaches Aufstecken auf ein Breadboard.
Encrypted payment
Your payment information is processed securely. We do not store credit card details nor have access to your credit card information.
Customs tariff number:
Country of origin:
This depends on where you are located. Once the order has been handed over to UPS, the delivery time in Germany is approx. 2-3 days, within Europe approx. 1 week.
We dispatch our articles with our shipping partner UPS.
If we have not yet answered your question, you can contact us and we will get back to you as soon as possible.